|
|
SI symbol: | G |
SI unit: | gigapascal |
Derivations from other quantities: | G = τ / γ |
In materials science, shear modulus or modulus of rigidity, denoted by G, or sometimes S or μ, is defined as the ratio of shear stress to the shear strain:[1]
where
Shear modulus is usually expressed in gigapascals (GPa) or in thousands of pounds per square inch (kpsi).
The shear modulus is always positive.
Contents |
Material | Typical values for shear modulus (GPa) (at room temperature) |
---|---|
Diamond[2] | 478. |
Steel[3] | 79.3 |
Copper[4] | 44.7 |
Titanium[3] | 41.4 |
Glass[3] | 26.2 |
Aluminium[3] | 25.5 |
Polyethylene[3] | 0.117 |
Rubber[5] | 0.0006 |
The shear modulus is one of several quantities for measuring the stiffness of materials. All of them arise in the generalized Hooke's law:
The shear modulus is concerned with the deformation of a solid when it experiences a force parallel to one of its surfaces while its opposite face experiences an opposing force (such as friction). In the case of an object that's shaped like a rectangular prism, it will deform into a parallelepiped. Anisotropic materials such as wood, paper and also essentially all single crystals exhibit differing material response to stress or strain when tested in different directions. In this case one may need to use the full tensor-expression of the elastic constants, rather than a single scalar value.
In homogeneous and isotropic solids, there are two kinds of waves, pressure waves and shear waves. The velocity of a shear wave, is controlled by the shear modulus,
where
The shear modulus of metals is usually observed to decrease with increasing temperature. At high pressures, the shear modulus also appears to increase with the applied pressure. Correlations between the melting temperature, vacancy formation energy, and the shear modulus have been observed in many metals.[9]
Several models exist that attempt to predict the shear modulus of metals (and possibly that of alloys). Shear modulus models that have been used in plastic flow computations include:
The MTS shear modulus model has the form:
where µ0 is the shear modulus at 0 K, and D and T0 are material constants.
The Steinberg-Cochran-Guinan (SCG) shear modulus model is pressure dependent and has the form
where, µ0 is the shear modulus at the reference state (T = 300 K, p = 0, η = 1), p is the pressure, and T is the temperature.
The Nadal-Le Poac (NP) shear modulus model is a modified version of the SCG model. The empirical temperature dependence of the shear modulus in the SCG model is replaced with an equation based on Lindemann melting theory. The NP shear modulus model has the form:
where
and µ0 is the shear modulus at 0 K and ambient pressure, ζ is a material parameter, kb is the Boltzmann constant, m is the atomic mass, and f is the Lindemann constant.
|
Conversion formulas | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these, thus given any two, any other of the elastic moduli can be calculated according to these formulas. | ||||||||||